Homework

Overview

...

Instructor: Zhixun Su, Junjie Cao, jjcao@dlut.edu.cn; TA: ?; QA: https://piazza.com?

关于大作业:共7个,每人交一份纸质版本,作为课程成绩的依据。截止时间2019.06.24. 作业描述 材料1 材料2.


When & where

Mon. 8:00 - 9:35am, 研409; Thur. 13:30 - 15:05pm, 研409

Schedule

Topic Lab assignments Reading
1. Introduction; Image processing
2. Filtering; Anisotropic diffusion
3. Haar transform, Fourier transform, Wavelets
4. Edge detection (Derivative of gaussians, Sobel filters, Canny edge detector)
5. Camera Calibration
6. Multiview Stereo
7. Segmentation, snakes, PDE, clustering
8. Segmentation, saliency, Subspace clustering
9. Local Feature Detection; Harris, Scale invariant features. Sec 4.1 in [RS]; David Lowe, IJCV 2004.
10. Local Image Feature Description & Matching; SIFT, HoG, Matching. Sec 4.1.3, 4.3.2 in [RS]; David Lowe, IJCV 2004.
11. Optical Flow
12. Object recognition
13. Tracking; Deep learning
14. Deep learning-tips
15. CNN
16. 2d human pose detection

Book

There is no requirement to buy a textbook. The goal of the course is to be self contained, but sections from three textbooks will be suggested for more formalization and information.

Course

Schedule 2019

Topic Lab assignments Reading
1. Introduction; Image processing
2. Filtering; Anisotropic diffusion
3. Haar transform, Fourier transform, Wavelets
4. Edge detection (Derivative of gaussians, Sobel filters, Canny edge detector)
5. Camera Calibration
6. Multiview Stereo
7. Segmentation, snakes, PDE, clustering
8. Segmentation, saliency, Subspace clustering
9. Local Feature Detection; Harris, Scale invariant features. Sec 4.1 in [RS]; David Lowe, IJCV 2004.
10. Local Image Feature Description & Matching; SIFT, HoG, Matching. Sec 4.1.3, 4.3.2 in [RS]; David Lowe, IJCV 2004.
11. Optical Flow
12. Object recognition
13. Tracking; Deep learning
14. Deep learning-tips
15. CNN
16. 2d human pose detection